
In this Chapter
 » Introduction
 » Stack
 » Operations on Stack
 » Implementation of Stack

in Python
 » Notations for Arithmetic

Expressions
 » Conversion From Infix To

Postfix Notation
 » Evaluation of Postfix

Expression

Chapter

“We're going to be able to ask our
computers to monitor things for us, and when

certain conditions happen, are triggered, the
computers will take certain actions and inform

us after the fact.”

— Steve Jobs

3.1 IntroductIon

We have learnt about different data types in
Python for handling values in Class XI. Recall
that String, List, Set, Tuple, etc. are the sequence
data types that can be used to represent collection
of elements either of the same type or different
types. Multiple data elements are grouped in a
particular way for faster accessibility and efficient
storage of data. That is why we have used different
data types in python for storing data values. Such
grouping is referred as a data structure.

A data structure defines a mechanism to store,
organise and access data along with operations
(processing) that can be efficiently performed on
the data. For example, string is a data structure
containing a sequence of elements where each
element is a character. On the other hand, list is
a sequence data structure in which each element
may be of different types. We can apply different
operations like reversal, slicing, counting of

3 Stack

Chpater-3.indd 39 18-Jun-21 2:30:02 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii StaCk40

Other important
data structures

in Computer
Science include
Array, Linked

List, Binary Trees,
Heaps, Graph,
Sparse Matrix,

etc.

A data structure
in which elements

are organised
in a sequence is
called linear data

structure.

elements, etc. on list and string. Hence, a data structure
organises multiple elements in a way so that certain
operations on each element as well as the collective
data unit could be performed easily.

Stack and Queue are two other popular data
structures used in programming. Although not directly
available in Python, it is important to learn these
concepts as they are extensively used in a number of
programming languages. In this chapter, we will study
about stack, its implementation using Python as well as
its applications.

3.2 Stack

We have seen piles of books in the library or stack of
plates at home (Figure 3.1). To put another book or
another plate in such a pile, we always place (add to
the pile) the object at the top only. Likewise, to remove
a book or a plate from such a pile, we always remove
(delete from the pile) the object from the top only. This
is because in a large pile, it is inconvenient to add or
remove an object from in between or bottom. Such an
arrangement of elements in a linear order is called a
stack. We add new elements or remove existing elements
from the same end, commonly referred to as the top of
the stack. It thus follows the Last-In-First-out (LIFO)
principle. That is, the element which was inserted last
(the most recent element) will be the first one to be taken
out from the stack.

Figure 3.1: Stack of plates and books

Chpater-3.indd 40 18-Jun-21 2:30:02 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii StaCk 41

How does a compiler
or an interpreter
handle function calls
in a program?

The operating
system in computer
or mobile allocates
memory to different
applications for
their execution. How
does an operating
system keep track
of the free memory
that can be allocated
among programs/
applications to be
executed?

3.2.1 APPLICATIONS OF STACK
Some of the applications of stack in real-life are:
• Pile of clothes in an almirah

• Multiple chairs in a vertical pile

• Bangles worn on wrist

• Pile of boxes of eatables in pantry or on a kitchen
shelf

Some examples of application of stack in programming
are as follows:
• When we need to reverse a string, the string is

traversed from the last character till the first
character. i.e. characters are traversed in the reverse
order of their appearance in the string. This is very
easily done by putting the characters of a string in
a stack.

• We use text/image editor for editing the text/image
where we have options to redo/undo the editing
done. When we click on the redo /undo icon, the
most recent editing is redone/undone. In this
scenario, the system uses a stack to keep track of
changes made.

• While browsing the web, we move from one web page
to another by accessing links between them. In order
to go back to the last visited web page, we may use the
back button on the browser. Let us say we accessed
a web page P1 from where we moved to web page P2
followed by browsing of web page P3. Currently, we
are on web page P3 and want to revisit web page P1.
We may go to a previously visited web page by using
the BACK button of the browser. On clicking the
BACK button once, we are taken from web page P3
to web page P2, another click on BACK shows web
page P1. In this case, the history of browsed pages is
maintained as stack.

• While writing any arithmetic expression in a program,
we may use parentheses to order the evaluation
of operators. While executing the program, the
compiler checks for matched parentheses i.e. each
opening parenthesis should have a corresponding
closing parenthesis and the pairs of parentheses
are properly nested. In case of parentheses are

Chpater-3.indd 41 18-Jun-21 2:30:02 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii StaCk42

mismatched, the compiler needs to throw an error.
To handle matching of parentheses, stack is used.

3.3 operatIonS on Stack

As explained in the previous section, a stack is a
mechanism that implements LIFO arrangement hence
elements are added and deleted from the stack at one
end only. The end from which elements are added or
deleted is called TOP of the stack. Two fundamental
operations performed on the stack are PUSH and POP.
In this section, we will learn about them and implement
them using Python.

3.3.1 PUSH and POP Operations

• PUSH adds a new element at the TOP of the stack.
It is an insertion operation. We can add elements
to a stack until it is full. A stack is full when no
more elements can be added to it. Trying to add an
element to a full stack results in an exception called
‘overflow’.

• POP operation is used to remove the top most element
of the stack, that is, the element at the TOP of the
stack. It is a delete operation. We can delete elements
from a stack until it is empty i.e. there is no element
in it. Trying to delete an element from an empty stack
results in an exception called ‘underflow’.

A stack is used
to insert and delete
elements in LIFO
order. Same principle
is followed in adding
and removing glasses
from a pile of glasses.
Let us create a stack of
glasses assuming that
each glass is numbered.
Visual representations
of PUSH and POP
operations on a stack
of glasses are shown in
Figure 3.2.

(i) Empty
 Stack

(ii) Push 1 (iii) Push 2 (iv) Pop (v) Push 3

1 1 1
3

(x) Empty
 Stack

(vi) Push 4 (vii) Pop

1
3
4

(viii) Pop

11
3

1
2

Top
Top

Top
Top

Top
Top

Top

(2 will be
removed)

(4 will be
removed)

(3 will be
removed)

(ix) Pop
(1 will be
removed)

Figure 3.2: PUSH and POP operations on the stack of glasses

Chpater-3.indd 42 18-Jun-21 2:30:03 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii StaCk 43

3.4 ImplementatIon of Stack In python
We have learnt so far that a stack is a linear and ordered
collection of elements. The simple way to implement a
stack in Python is using the data type list. We can fix
either of the sides of the list as TOP to insert/remove
elements. It is to be noted that we are using built-in
methods append() and pop() of the list for implementation
of the stack. As these built-in methods insert/delete
elements at the rightmost end of the list, hence explicit
declaration of TOP is not needed.

Let us write a program to create a STACK (stack of
glasses as given in Figure 3.2) in which we will:
• insert/delete elements (glasses)

• check if the STACK is empty (no glasses in the stack)

• find the number of elements (glasses) in the STACK

• read the value of the topmost element (number on
the topmost glass) in the STACK

The program shall define the following functions to
perform these operations:
• Let us create an empty stack named glassStack.

We will do so by assigning an empty list to the
identifier named glassStack:

glassStack = list()

• A function named isEmpty to check whether the
stack glassStack is empty or not. Remember trying
to remove an element from an empty stack would
result in ‘underflow’. This function returns True if
the stack is empty, else returns False.

def isEmpty(glassStack):

 if len(glassStack)==0:

 return True

 else:

 return False

• A function named opPush to insert (PUSH) a new
element in stack. This function has two parameters
- the name of the stack in which the element is to be
inserted (glassStack) and the element that needs
to be inserted. We know that insertion of an element
is always done at the TOP of the stack. Hence, we

noteS

Chpater-3.indd 43 18-Jun-21 2:30:03 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii StaCk44

shall use the built-in method append() of list to
add an element to the stack that always adds at the
end of the list. As there is no limit on the size of list
in Python, the implemented stack will never be full
unless there is no more space available in memory.
Hence, we will never face ‘overflow’ (no space for new
element) condition for stack.

def opPush(glassStack,element):

 glassStack.append(element)

• A function named size to read the number of
elements in the glassStack. We will use the len()
function of list in Python to find the number of
elements in the glassStack.

def size(glassStack):

 return len(glassStack)

• A function named top to read the most recent element
(TOP) in the glassStack.

def top(glassStack):

 if isEmpty(glassStack):

 print('Stack is empty')

 return None

 else:

 x =len(glassStack)

 element=glassStack[x-1]

 return element

• A function named opPop to delete the topmost
element from the stack. It takes one parameter - the
name of the stack (glassStack) from which element
is to be deleted and returns the value of the deleted
element. The function first checks whether the stack
is empty or not. If it is not empty, it removes the
topmost element from it. We shall use the built-
in method pop() of Python list that removes the
element from the end of the list.

def opPop(glassStack):

 if isEmpty(glassStack):

 print('underflow')

 return None

 else:

 return(glassStack.pop())

noteS

Chpater-3.indd 44 18-Jun-21 2:30:03 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii StaCk 45

•	 A	function		named	display		to	show	the	contents	of	
the	stack.	

def display(glassStack):

 x=len(glassStack)

 print("Current elements in the stack
are: ")

 for i in range(x-1,-1,-1):

 print(glassStack[i])

Once	we	define	the	above	functions	we	can	use	
the	 following	Python	 code	 to	 implement	 a	 stack	 of	
glasses.	

glassStack = list() # create empty stack

#add elements to stack

element='glass1'

print("Pushing element ",element)

opPush(glassStack,element)

element='glass2'

print("Pushing element ",element)

opPush(glassStack,element)

#display number of elements in stack

print("Current number of elements in stack
is",size(glassStack))

#delete an element from the stack

element=opPop(glassStack)

print("Popped element is",element)

#add new element to stack

element='glass3'

print("Pushing element ",element)

opPush(glassStack,element)

#display the last element added to the
#stack

print("top element is",top(glassStack))

#display all elements in the stack

display(glassStack)

Notes

Chpater-3.indd 45 11/10/2021 4:53:42 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii StaCk46

#delete all elements from stack
while True:
 item=opPop(glassStack)
 if item == None:
 print("Stack is empty now")
 break
 else:

 print("Popped element is",item)

The output of the above program will be as
follows:
Pushing element glass1
Pushing element glass2
Current number of elements in stack is 2
Popped element is glass2
Pushing element glass3
top element is glass3
Current elements in the stack are:
glass3
glass1
Popped element is glass3
Popped element is glass1
Underflow

Stack is empty now

3.5 NotatioNs for arithmetic expressioNs

We write arithmetic expressions using operators in
between operands, like x + y, 2 - 3 * y, etc. and use
parentheses () to order the evaluation of operators in
complex expressions. These expressions follow infix
representation and are evaluated using BODMAS rule.

Polish mathematician Jan Lukasiewicz in the
1920's introduced a different way of representing
arithmetic expression, called polish notation. In such
notation, operators are written before their operands.
So the order of operations and operands determines the
result, making parentheses unnecessary. For example,
we can write x+y in polish notation as +xy. This is
also called prefix notation as we prefix the operator before
operands.

By reversing this logic, we can write an expression
by putting operators after their operands. For example,
x+y can be written as xy+. This is called reverse polish

Notes

Chpater-3.indd 46 11/29/2021 10:43:52 AM

Reprint 2025-26

Computer SCienCe - ClaSS Xii StaCk 47

notation or postfix notation. To summarise, any
arithmetic expression can be represented in any of the
three notations viz. Infix, Prefix and Postfix and are
listed in Table 3.1 with examples.

Table 3.1 Infix, Prefix and Postfix Notations
Type of

Expression Description Example

Infix Operators are placed in
between the operands

x * y + z
3 *(4 + 5)

(x + y)/(z * 5)

Prefix
(Polish)

Operators are placed
before the corresponding
operands

 +z*xy
*3+45

/+xy*z5

Postfix
(Reverse Polish)

Operators are placed
after the corresponding
operands

xy*z+
345+*

xy+z5*/

3.6 converSIon from InfIx to poStfIx notatIon

It is easy for humans to evaluate an infix expression.
Consider an infix expression x + y / z. While going
from left to right we first encounter + operator, but we
do not add x + y and rather evaluate y/z, followed by
addition operation. This is because we know the order
of precedence of operators that follows BODMAS rule.
But, how do we pass this precedence knowledge to the
computer through an expression?

In contrast, prefix/postfix expressions do not have
to deal with such precedence because the operators are
already positioned according to their order of evaluation.
Hence a single traversal from left to right is sufficient to
evaluate the expression. In this section, we will learn
about the conversion of an arithmetic expression written
in infix notation to its equivalent expression in postfix
notation using a stack.

During such conversion, a stack is used to keep track
of the operators encountered in the infix expression. A
variable of string type is used to store the equivalent
postfix expression. Algorithm 3.1 converts an expression
in infix notation to postfix notation:

Algorithm 3.1: Conversion of expression from infix to postfix notation
Step 1: Create an empty string named postExp to store the converted postfix expression.
Step 2: INPUT infix expression in a variable, say inExp
Step 3: For each character in inExp, REPEAT Step 4

Write an algorithm
to convert an infix
expression into
equivalent prefix
expression using
stack.

Chpater-3.indd 47 18-Jun-21 2:30:03 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii StaCk48

Example 3.1
Let us now use this algorithm to convert a given infix
expression (x + y)/(z*8) into equivalent postfix expression
using a stack. Figure 3.3 shows the steps to be followed
on encountering an operator or an operand in the
given infix expression. Note here that stack is used
to track the operators and parentheses, and a string
variable contains the equivalent postfix expression.
Initially both are empty. Each character in the given
infix expression is processed from left to right and the
appropriate action is taken as detailed in the algorithm.
When each character in the given infix expression has
been processed, the string will contain the equivalent
postfix expression.

Step 4: IF character is a left parenthesis THEN PUSH on the Stack
 ELSE IF character is a right parenthesis
 THEN POP the elements from the Stack and append to string
 postExp until the corresponding left parenthesis is popped
 while discarding both left and right parentheses
 ELSE IF character is an operator
 THEN IF its precedence is lower than that of operator at the top of Stack
 THEN POP elements from the Stack till an
 operator with precedence less than the current
 operator is encountered and append to string
 postExp before pushing this operator on the
 postStack
 ELSE PUSH operator on the Stack
 ELSE Append the character to postExp

Step 5: Pop elements from the Stack and append to postExp until Stack is empty

Step 6: OUTPUT postExp

SYMBOL :

ACTION :

(

PUSH PUSH

(((

x y+

+
(
+

POSTFIX
STRING (postExp)

empty x x x y

Initial
Stack

(Empty)

Append
to string
postExp

Append
to string
postExp

Chpater-3.indd 48 18-Jun-21 2:30:03 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii StaCk 49

Figure 3.3: Conversion of infix expression (x + y)/(z*8) to postfix notation

3.7 evaluatIon of poStfIx expreSSIon
Stacks can be used to evaluate an expression in postfix
notation. For simplification, we are assuming that
operators used in expressions are binary operators.
The detailed step by step procedure is given in
Algorithm 3.2.

Algorithm 3.2: Evaluation of postfix expression
Step 1: INPUT postfix expression in a variable, say postExp
Step 2: For each character in postExp, REPEAT Step 3
Step 3: IF character is an operand

 THEN PUSH character on the Stack
 ELSE POP two elements from the Stack, apply the operator on

Chpater-3.indd 49 18-Jun-21 2:30:05 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii StaCk50

 the popped elements and PUSH the computed value onto
 the Stack

Step 4: IF Stack has a single element
THEN POP the element and OUTPUT as the net result
ELSE OUTPUT “Invaild Postfix expression”

Example 3.2
Figure 3.4 shows the step-by-step process of evaluation
of the postfix expression 7 8 2 * 4 / + using Algorithm
3.2 .

 PUSH PUSH PUSH

POPPOP two
elements, apply

the operator
and push back

the result

SYMBOL : 7 8 2

ACTION :

ACTION :

SYMBOL : +

ACTION :

EMPTY

7

11

7
8

7

2
8

PUSH

Result = 11

POP two
elements, apply

the operator and
push back the

result

POP two
elements, apply

the operator
and push back

the result

SYMBOL : * 4 /

7
16

7

4
16

7
4

Initial
Stack

(Empty)

Final
Stack

(Empty)

End of
Input

Expression

Figure 3.4: Evaluation of postfix expression 7 8 2 * 4 /+

Write an algorithm to
evaluate any prefix
expression using a
stack.

Chpater-3.indd 50 18-Jun-21 2:30:05 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii StaCk 51

Summary

• Stack is a data structure in which insertion
and deletion is done from one end only, usually
referred to as TOP.

• Stack follows LIFO principle using which an
element inserted in the last will be the first one
to be out.

• PUSH and POP are two basic operations performed
on a stack for insertion and deletion of elements,
respectively.

• Trying to pop an element from an empty stack
results into a special condition underflow.

• In Python, list is used for implementing a stack
and its built-in-functions append and pop are
used for insertion and deletion, respectively.
Hence, no explicit declaration of TOP is needed.

• Any arithmetic expression can be represented
in any of the three notations viz. Infix, Prefix
and Postfix.

• While programming, Infix notation is used for
writing an expression in which binary operators
are written in between the operands.

• A single traversal from left to right of Prefix/
Postfix expression is sufficient to evaluate the
expression as operators are correctly placed as
per their order of precedence.

• Stack is commonly used data structure to convert
an Infix expression into equivalent Prefix/Postfix
notation.

• While conversion of an Infix notation to its
equivalent Prefix/Postfix notation, only operators
are PUSHed onto the Stack.

• When evaluating any Postfix expression using
Stack, only operands are PUSHed onto it.

noteS

Chpater-3.indd 51 18-Jun-21 2:30:05 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii StaCk52

Notes

1. State TRUE or FALSE for the following cases:
a) Stack is a linear data structure
b) Stack does not follow LIFO rule
c) PUSH operation may result into underflow condition
d) In POSTFIX notation for expression, operators are

placed after operands
2. Find the output of the following code:

a) result=0
 numberList=[10,20,30]
 numberList.append(40)
 result=result+numberList.pop()
 result=result+numberList.pop()
 print(“Result=”,result)
b) answer=[]; output=''
 answer.append('T')
 answer.append('A')
 answer.append('M')
 ch=answer.pop()
 output=output+ch
 ch=answer.pop()
 output=output+ch
 ch=answer.pop()
 output=output+ch
 print(“Result=”,output)

3. Write a program to reverse a string using stack.
4. For the following arithmetic expression:

 ((2+3)*(4/2))+2
 Show step-by-step process for matching parentheses

using stack data structure.
5. Evaluate following postfix expressions while showing

status of stack after each operation given A=3, B=5,
C=1, D=4
a) A B + C *
b) A B * C / D *

6. Convert the following infix notations to postfix notations,
showing stack and string contents at each step.
a) A + B - C * D
b) A * ((C + D)/E)

7. Write a program to create a Stack for storing only odd
numbers out of all the numbers entered by the user.
Display the content of the Stack along with the largest
odd number in the Stack. (Hint. Keep popping out the
elements from stack and maintain the largest element
retrieved so far in a variable. Repeat till Stack is empty)

exercise

Chpater-3.indd 52 17 December 2021 10:05:21

Reprint 2025-26

	lecs1ps
	lecs101
	lecs102
	lecs103
	lecs104
	lecs105
	lecs106
	lecs107
	lecs108
	lecs109
	lecs110
	lecs111
	lecs112
	lecs113

